sábado, 26 de mayo de 2012

fisiologia vegetal( La Relación)

Función de relación de las plantas.

Esta es la capacidad que tienenlas plantas de captar estímulos (variaciones F/Q del medio), como son la temperatura, la humedad, la iluminación o el viento. Estas variaciones en lascondiciones ambientales se producen sin presentar las plantas órganos de los sentidos. Respondiendo ante los cambios para adaptarse a ellos. Todo ellos careciendo de SNC y músculos, siendo la respuesta a estos cambios el crecimiento, que se observa aunque son muy lentos. Estas respuestas son producidas a través de hormonas (mensajeros químicos) que solo afectan a as células Diana. Estas célulaspresentan unos receptores que captan las hormonas, las hormonas llegan a travésde la savia o incluso de célula a célula, produciendo una transmisión químicade la información todo ellos sin presentar glándulas endocrinas. Estas hormonas se llaman fitohormonas y se producen en las células meristematicas, el efecto de estas es potenciado o contrarrestado por la presencia de otra hormona, dependiendo su efecto de la proporción en la que se encuentre una respecto a otra. Hay varios tipos de hormonas:

  • Auxina (ácido indolacético “IAA”)
Es un derivado de un Aa llamado triptófano, es la más abundante de las fitohormonas y produce el crecimiento en longitud.

  • Citoquininas.
Es un derivado de las bases púricas (A,T) que constituyen los Ac. Nucleicos. Se produce en el meristemo apical de la raíz y provoca la formación de brotes y contrarresta el efecto dela Auxina.

  •  Giberelinas.
Son hormonas derivadas de lípidos isoprenoide (=colesterol), produce la formación y crecimiento de flores y frutos y la germinación de la semilla.

  • Ácido abscísico.
Hace lo contrario de la giberelina e inhibe la formación y crecimiento de las flores y frutos y la germinación de la semilla.

  • Etileno.
Es gaseoso e inhibe el crecimiento, provocando la maduración del fruto y la caída de hojas y flores.
Todas las fitohormonas se utilizan en la hortofruticultura.


Respuestas en las plantas.
Las respuestas son adaptaciones a los cambios ambientales produciendo dos tipos de respuesta.
El que tiene que ver con el crecimiento y desarrollo de la planta como es la germinación de la semilla, la fase de crecimiento, la floración, la polinización, la fecundación y la formación y maduración del fruto. Mientras que el resto de respuestas son demovimiento que tienen que ver con el crecimiento son desplazamiento. Estos movimientos son los tropismos y nastias que son controlados por hormonas.

- Tropismos.
 
Son movimientos de crecimiento permanentes, causados y dirigidos por estímulos. Como por ejemplo:

  • Fototropismo.
Lo produce la Auxina, que emigra donde no da la luz produciendo crecimiento del tallo y su inhibición en la raíz.

  • Geotropismo.
Es también producido por la Auxina y es positivo en a raíz que crece a favor de la gravedad y negativo en el tallo que crece en contra de la gravedad.

  • Hidrotropismo.
En la raíz es positivo ya que busca reservas de agua y negativo en el tallo.

  • Quimiotropismo.
En este tropismo la raíz se dirige hacia donde hay sales minerales.


- Nastias.
 
Producen movimientos de turgencia (células se hinchan) y de crecimiento causados por un estimulo pero no en su dirección y tampoco son permanentes.

  • Fotonastia.
Es la apertura/cierre de flores.

  • Tigmonastia.
El estimulo se produce por contacto. En algunos casos es creciendo trepando (plantas trepadoras) y otros en el caso de las plantas carnívoras, que al contacto del insecto se cierra.

miércoles, 16 de mayo de 2012

fisiología vegetal(La Nutrición)

Función de nutrición de las plantas.

En el caso de las talofitas (musgos), todas sus células intervienen en las funciones vitales (nutrición, relación y reproducción). Ya que no sufren diferenciación celular (son todas iguales), no presentan tejidos, ni órganos, ni aparatos.
Son unas talofitas muy evolucionadas,siendo las primeras plantas terrestres. No presentan raíz, sino rizoides con la función de fijar la planta al sustrato. Tampoco presenta tallo, ni vasos conductores lo que las obliga a vivir en lugares húmedos, donde toman agua del aire a través de sus células fotosintéticas. El resto de los nutrientes son transportados de célula en célula por difusión, osmosis y transporte activo. Recordemos que la difusión es el movimiento que se da en una disolución hasta que se igualan las concentraciones a favor del gradiente de concentración. La osmosis es el movimiento del agua (disolvente) contra el gradiente de concentración s través de una membrana semipermeable, siendo el mecanismo universal de transporte delos seres vivos sin consumo de energía. El transporte activo es el movimiento del soluto contra el gradiente de concentración, con un consumo de energía y de transportador.

En el caso de la nutrición de las cormofitas todas sus células necesitan de monómeros que utilizan para obtener energía, necesaria para todas las actividades (respiración celular, etc.) y otros monómeros con los cuales fabrican su propia materia (polímeros). Las plantas al ser autótrofas fabrican sus monómeros mediante fotosíntesis, que ocurre en ciertas partes de la planta, en concreto en las partes verdes, captando CO2+H2O+ sales minerales+luz, para fabricar monómeros + O2. Estos monómeros se distribuyen hasta las células no fotosintéticas.

- Absorción de nutrientes.
Los nutrientes de la fotosíntesis son el CO2+H2O+ sales minerales y se obtienen de estas maneras.

  • Absorción del agua y sales minerales.
La absorción del agua se realiza a través de los pelos absorbentes de la raíz, dichos pelos son evaginaciones de las células epidérmicas. El agua entra desde el suelo mediante ósmosis, la diferencia de presión osmótica nunca desaparece ya que tanta agua que entra porla raíz se evapora por las estomas, manteniendo la presión osmótica en la raíz. Esto se consigue por varias condiciones, como la gran tensión superficial de agua.
La tensión superficial del agua es la resistencia de un líquido a la introducción de un solido en su seno. Es una medida de la tensión que hay entre las moléculas del líquido debiéndose esto a que agua tiene mucha carga. Mas la capilaridad del xilema (tubo capilar) produce la ascensión por capilaridad. Esta ascensión que alcanza un líquido en un tubo es inversamente proporcional al diámetro del tubo. Las moléculas de agua están en fila dentro del capilar donde caben pocas moléculas al mismo tiempo. Son empujadas hacia arriba por la evaporación, mediante la transpiración en los estomas en el cada vez que una molécula se evapora empuja entra otra en la raíz. Esto se conoce como la teoría coeheso-tenso- transpiratória la cual explica la ascensión de la savia bruta.
Las sales minerales son absorbidas desde el suelo (también por los pelos absorbes) contra el gradiente de concentración, con un consumo de energía mediante transporte activo. Estas sustancias deben encontrarse en forma iónica y según la especie vegetal necesita una cantidad u otras, pero todas precisan de K+, Na+, Ca2+, Mg2+, Fe+, NO3-,PO43- y SO32-, y una serie variable de oligoelementos como Mo6+, Zn2+, Mn7+.



  • Gases.
El CO2 se necesita para la fotosíntesis y se desprende en la respiración celular. El O2se desprende en la fotosíntesis y se necesita para la respiración celular. Se intercambian por las estomas en las hojas y por las lenticelas en troncos y raíces, una vez dentro de la planta se difunden por los espacios intercelulares.

 
  • Transporte de la savia bruta.
La savia bruta esta formada por H2O + sales minerales, es absorbida por la raíz y se transporta por los vasos capilares del xilema. Ascendiendo según la Teoría de coeheso-tenso-transpiratoria, a favor de un gradiente de potencial hídrico (medida de la energía del agua, para su capacidad de moverse o para intervenir en reacc. químicas). El paso del suelo a la raíz y este a la planta hasta legar a la atmósfera son un continuo del gradiente de potencial hídrico. Enlos estomas es donde se encuentra el mayor potencial hídrico, producido por el calor del sol donde se aspira/succiona el agua del xilema. Esto es solo posiblepor el agua gracias a su tensión superficial y a estar en un vaso capilar.


  • Transpiración.
Es la evaporación del H2O en los estomas, permitiendo la entrada de agua por la raíz. Permite la ascensión de la savia bruta y mantiene la temperatura de la hoja, como si“sudara”. La intensidad de la transpiración depende de la temperatura, de la humedad en el aire y del viento. Factores que determinan la apertura y cierre de los estomas para favorecerla o dificultarla.


  • Fotontesis.
Ocurre en las partes verdes de la planta, mayoritariamente en las hojas, donde se encuentra la savia bruta procedente de la raíz con el CO2 intercambiado por los estomas. Al unirse el CO2+ savia bruta + luz se produce una reacción química que da lugar a la savia elaborada compuesta por H2O + monómeros y O2.Esta savia elaborada se distribuye por toda la planta.


  •  Transporte de la savia elaborada.
La savia elaborada es una disolución que por difusión va desde la hoja o los órganos de reserva distribuyéndose por toda la planta a través del floema. Los monómeros pasan al floema por transporte activo y por osmosis el agua, llegando a los lugares donde se consumen (partes no verdes) o los órganos de reserva. Los monómeros llegan a las células que los utilizan en su metabolismo, en algunos casos para obtener polímeros mediante el anabolismo y en otros para obtener energía para su funcionamiento mediante catabolismo (respiración celular, combustión con O2). Cuando se consumen los monómeros el H2O pasa de nuevo al xilema por osmosis.


  • Excreción.
Es la eliminación de los desechos del metabolismo (catabolismo). Los desechos gaseosos se eliminan por las estomas (vapor H2O, CO2, O2), otros se acumulan en ciertas partes de la planta en forma de cristales, de látex o resina. Al no se la nutrición de las plantas muy abundante se producen pocos desechos y en algunas ocasiones estos mismos desechos son reutilizados como es el vapor de H2O, o el propio O2 para la respiración celular y el CO2 para la fotontesis. Y algunos componentes de nitrógeno que los utiliza para el anabolismo.


-Nutrición heterótrofa de algunas plantas.

Es el caso de las plantas carnívoras, pero son plantas verdes por lo que hacen la fotosíntesis y su nutrición es autótrofa. Lo que ocurre es que suelen vivir en suelos pobres de sales minerales, teniendo que sustituirla atrapando animales sobre los que vierten enzimas digestivos, obteniendo los componentes de P y N que no obtienen del suelo.
Las que verdaderamente son heterótrofas son plantas parásitas, no son verdes y se alimentan produciendo unas prolongaciones que se introducen en el floema de la planta huésped. Un caso de planta parásita es el muérdago

martes, 1 de mayo de 2012

tema 9 Formas de organizacion de los seres vivos

Organización de los S. vivos. Tejidos y Órganos vegetales/animales

Los s. vivos están formados por células y tienen autonomía. Existen organismos unicelulares y pluricelulares. Entre los pluricelulares existen organismos sin tejido (talofitas, esponjas), estos son organismos primitivos. Los evolucionados con tejidos (células = estructura= función), dividen el trabajo teniendo mayor eficacia, formando órganos, que asociados con una función unitaria forman aparatos (A. digestivo, A. respiratorio). Mientras que un mismo órgano distribuido por un organismo forman un sistema (Sist. nervioso, Sist. circulatorio).
  • Son más complejas porque al tener más orgánulos pueden realizar mas funciones. Tienen ADN diferenciado.
  • Son más evolucionadas y necesitan realizar mas funciones y precisan de una célula eucariota.
  •  Es un grupo de seres vivos juntos. En las colonias unicelulares cada individuo realiza sus funciones vitales. Juntos se defienden mejor.
  •  No, porque aunque tengan la misma forma, solo tienen la misma función y necesita de resto de órganos.
  •  No, ya que solo realizan una función y necesitan de los demás órganos.

Los tejidos de las plantas
Las cormofitas son plantas superiores en las que se encuentra tres partes diferenciadas, raíz, tallo y hojas. Estas plantas proceden evolutivamente de las talofitas (talo= todo indiferenciado) y más exactamente de las algas verdes, cuando estas se adaptaron al hábitat terrestre. De las algas verdes aparecieron las briofitas (musgo) que fue la 1ºplanta terrestre, todavía seguían siendo talofitas. Así fueron apareciendo las pteridofitas (helechos sin semilla) y luego las cormofitas verdaderas.
Las espermatofitas son plantas con semilla y se dividen en dos, las gimnosperma que aparecieron primero y su semilla esta al desnudo (coníferas) y a partir de estas aparecieron las angiosperma en la cual la semilla está envuelta en el ovario (fruto) y se dividen en dos grupos. Las dicotiledoneas (arboles y arbustos) con dos hojas embrionarias y las monocotiledoneas(hierbas) con una sola hoja embrionaria.
Las talofitas sin tejidos para adaptarse a las dificultades del medio terrestre necesitaron especializar sus células por funciones para una mayor eficacia, “inventando” la diferenciación celular. Los organismos con tejidos tienen celular embrionarias llamadas totipotentes, al igual que todas las células están contienen todos los cromosomas, con la información genética para fabricar cualquier proteína. La diferenciación celular consiste en la represión irreversible de la mayor parte del genoma, esto hace que solo pueda producir unas ciertas proteínas que le dan su estructura y función a las células. Una agrupación de estas células forma los tejidos. Esto produce la división del trabajo y produciendo una mayor eficacia, necesitando menos materia y energía para funcionar y esto una mayor evolución.
Tejidos meristemático.
Son los tejidos encargados del crecimiento de las plantas, están formados por células embrionarias que se dividen activamente y son indiferenciadas. Son células esféricas y tienen una pared celular delgada y no aparecen apenas vacuolas. Hay dos tipos de meristemos, el primario (meristemo apical) se encuentra en los extremos de los tallos y las raíces, producen el crecimiento en longitud. A medida que se quedan detrás se produce la diferenciación celular y forman los vasos y la epidermis, pierden toda capacidad de división (exclusivo meristemo). El otro tipo de meristemo es el secundario y es exclusivo de los árboles y arbustos, ya que es el responsable del crecimiento en grosor, todas las células que quedan fuera se diferencian pero dos cilindros lo conserva formando el felógeno (corcho) y el cambium (vasos).

Tejidos protectores.
Son los encargados de proteger y recubrir la planta. La epidermis está formada por células alargadas, que se encuentran íntimamente unidas y no tienen cloroplastos, protegiendo todas las partes verdes. Su función es impedir la perdida de agua, por lo que poseen en la cara externa una pared celular con una cera impermeabilizante llamada cutina (cutícula). La planta necesita intercambiar gases, transpirar (evaporar agua) y no lo hacen por la epidermis sino que tiene unas estructuras llamadas estomas en el envés de la hoja formados por dos células oclusivas (abren/cierran según las condiciones ambientales) permitiendo la entrada de aire hacia un hueco/cámara subestomática donde se intercambian los gases con las restantes células de la hoja y la transpiración. La epidermis se encuentra en las partes verdes aéreas. En la raíz no hay epidermis sino rizodermis y en ellas las células no están impermeabilizadas ya que tienen que absorber agua y sales del suelo. Se encuentran evaginaciones de las propias células que dan lugar a pelos absorbentes. Este es el tejido protector de las herbáceas y partes verdes de cualquier planta.
En las plantas leñosas (arboles/arbustos) su tejido protector es el súber (corcho) y procede del felógeno. El súber está formado por muchas capas de células muertas, antes han engrosado sus paredes celulares con suberina (prot. Impermeable e ignifuga) que lo protege de los parásitos, impermeabiliza y permiten el intercambio de gases. Presentan discontinuidades/interrupciones/orificios por los que se intercambian gases llamado lenticelas.

Tejidos parenquimáticos.
Constituyen la mayor parte de un vegetal y están formados por células vivas y poco diferenciadas. Realizan distintas funciones y todas están relacionadas con la nutrición.
Parénquima clorofílico.
Está formado por células con muchos cloroplastos que realizan la fotosíntesis, también se aprecia el parénquima lagunar que favorece la circulación de aire.

P. reserva.
No presentan cloroplastos y acumulan reservas (generalmente almidón) pero presentan amiloplastos que aparecen en la pulpa de la fruta y en la semilla. Un tipo especial de este parénquima es el acuífero que acumula agua, en las plantas xerofitas (cactos)
P. relleno.
Rellena los huecos dejados por otras células.
Tejido de sostén.
No son tanto de sostén ya que las propias células presentan una pared celular rígida que las sostienen. Las células que actúan como sostén tienen una pared muy engrosada, encontrando algunas lignificadas (lignina rígida). Existen dos tipos de tejidos de sostén:
  •  Colénquima.
Son células vivas de paredes engrosadas en los ángulos no lignificados, esto permite el crecimiento de las células adyacentes en las partes verdes/jóvenes.
  • Esclerénquima.
Son células muertas de paredes también engrosadas y lignificadas que sirven de sostén a órganos adultos que ya han dejado de crecer y pueden ser fibras, fibras del xilema y esclereidas o células pétreas.

Tejidos conductores.
Estos tejidos se encargan del transporte de la savia a través de la planta, está formado por células fusionadas unas con otras formando tubos o vasos conductores, existen dos tipos:
  • Xilema vasos.
Transportan la savia bruta, que son el agua y las sales que son absorbidas, llevándolas desde la raíz hasta las hojas. Existen dos tipos de xilemas, las traqueidas y las traqueas.
Las traqueidas son células alargadas y puntiagudas, las cuales sus tabiques de separación presentan unos poros que permiten la ascenccion de la savia, esto es común en los helechos y las gimnospermas. Las traqueas son células cilíndricas, con tabiques muy porosos o inexistente formando anillos. Tanto las traqueidas como las traqueas están lignificadas y son impermeables, lo que quiere decir que están muertas cumpliendo también una función de sostén.
  • Vasos del floema.
Están formados por células vivas, no lignificadas y permeables. Los tabiques de separación están perforados, parecidos a una criba llamado placa cribosa. En aquellas plantas que tienen hojas caducas, cuando llega el otoño los poros de la placa cribosa quedan tapados por una sustancia llamada celosa que impide la circulación de la savia elaborada, una vez llega la primavera se reactiva la circulación de savia elaborada que está compuesta de agua + monómeros, al disolverse la celosa esta viaja desde las hojas hacia todas las partes de la planta.
Tejidos secretores y excretores.
Secreción es la acción de expulsar sustancias.Producidas y que son de utilidad, cuando es al exterior es expulsada por las células epidérmicas y son el nectario y pelos glandulares (ortigas) y al interior una sust. Llamada látex (liquido lechoso) que da como resultado el caucho, resina, bálsamo y alcaloides. Mientras que la excreción es la eliminación de desechos del metabolismo.
Órganos vegetales.
Los órganos vegetales de las cormofitas son en un principio la raíz, tallo y hojas.
  • Raíz: es la parte subterránea de la planta y su función es a de fijar la planta al suelo y absorber el agua y las sales minerales.
  • Tallo: generalmente es aéreo y sirve para sostener las hojas y conducir la savia en las dos direcciones.
  • Hojas: su función básica es realizar la fotosíntesis y fabricar los monómeros, realizan la transpiración y el intercambio gaseoso.
Tanto el tallo como la raíz presentan estructuras primarias sencillas, que es la única estructura que presentan las monocotiledóneas y una estructura secundaria que las presentan las gimnospermas y dicotiledóneas (árboles y arbustos de aspecto leñoso). Solo aparecen en plantas a partir de los dos años y son consecuencia del crecimiento en grosor.
La estructura primaria de la raíz, es una estructura sencilla, tiene una médula en la que encontramos los vasos del xilema y floema rodeando a la endodermis y todo esto rodeado de parénquimas y epidermis. Cuando cambian las células de dentro se dividen formando el xilema y hacia fuera el floema. Las células del felógeno exteriores generan el súber y las células interiores generan el parénquima cortical.
Las hojas unidas al tallo a través del peciolo, envueltas tanto el haz como el envés por células de epidermis, en el envés aparecen también las estomas, formado por orificios llamados ostiolos, que están formadas por células oclusivas que se abren o cierran según las condiciones ambientales. Estas dos células se cierran cuando se hinchan de agua y se cierran cuando tienen poca. La cámara subestomática esta comunicada al exterior gracias al ostiolo, permitiendo que circule el aire a través de la hoja.

1. Ascenso de la savia bruta a través del xilema.
2. Que no estaría erguida.
3. Para impedir la evaporación excesiva.
4. Se evapora por transpiración.
6. De la savia elaborada.
7. Yemas: Meristemo apical.
Nudos: Parte ensanchada de donde salen las yemas.
Entrenudos: parte ligeramente menos ensanchada del tallo.
Los nervios están en el envés para dejar mas sitio a la fotosíntesis.

Tejidos animales.
En los tejidos animales igual que en los vegetales se produce una diferenciación celular, pero a un mayor nivel a partir de las células embrionarias. A partir de esta diferenciación celular se forman los tejidos, formados por células cuya represión irreversible de la mayoría de sus genes le da una estructura que determina su función formando los diferentes tejidos. Estos tejidos asociados forman órganos, que dan lugar a aparatos y estos a sistemas.


Tejidos formados por células + sust. Intercelular.
Tejido epitelial.

Sus células tienen diversos aspectos y muy poca sust. Intercelular, ya que sus células están estrechamente unidas para proteger y se clasifican según su función:
  • Tejidos epitelial de revestimiento o protección.
Su función es revestir la superficie corporal y en otros casos tapizan el interior de cavidades interiores. Se clasifican por su forma y nº de capas de células.
-T.R. pavimentoso.
Está formado por células planas unidas como piezas de un puzle y se dividen en dos:
-T.R.P. monoestriado.
Está formado por una sola capa de células y tapiza el interior de todos los vasos, corazón y alveolos pulmonares.
-T.R.P pluriestriado.
Formado por varias capas, se clasifica en dos:
  • Mucosa.
Tapiza el tubo digestivo y el aparato respiratorio.
  • Tegumentos.
Reviste la superficie corporal (epidermis), está formado por células muertas y queratinizadas. Continuamente son sustituidas por células vivas de capas internas. Son estructuras derivadas de la epidermis el pelo, las uñas, las plumas y las escamas.
- T.R. prismático.
Está formado por células en forma de prisma y se llaman prismático monoestratificados y pueden ser dos tipos:
Uno se encuentra en el intestino delgado tapizándolo, se caracteriza porque forma unos pliegues que hace que haya más superficie para la absorción de nutrientes. El otro se encuentra tapizando la tráquea y los bronquios.
- T.R. sensitivo.
Formados por células que captan estímulos olfativo y gustativo (papilas gustativas).
Tejidos epitelial glandular.
Forman las glándulas y son células epiteliales con función secretora (fabrican sust. y las vierten fuera), pueden verter a la superficie corporal o en cavidades internas.
  • Glándulas exocrinas.
Son aquellas glándulas que vierten la sustancia sobre la superficie corporal, como son glándulas salivales, mucosa, lagrimales, digestivas, sudoríparas.
  • Glándulas endocrinas.
También son células epiteliales, pero no vierten al exterior. Producen hormonas que son mensajeros químicos que llevan información a las demás células como las hormonas de crecimiento, sexuales, la insulina, etc. que vierten en la sangre. Estas forman un sistema hormonal que funciona como Sist. de control en los organismos.

  • Glándulas mixtas.
Tienen parte exocrina y endocrina, como ocurre con el páncreas que produce enzimas digestivas que van al tubo digestivo y la insulina que va a la sangre.


Tejidos conectivos.
Son tejidos que rellenan, unen y sostienen al resto de los tejidos. Están formados por células que pueden ser propias o emigradas del Sist. inmunitario. Además de estas células tienen una sustancia intercelular llamada matriz y unas fibras de proteínas que sostienen al tejido y según su forma encontramos diferentes tejidos.
Tejido conjuntivo.
Rellena, une y relaciona a los demás tejidos y órganos. Las células propias de estos tejidos son los fibroplastos, tienen un aspecto estrellado y se encargan de fabricar la sustancia intercelular que son las glucoproteinas y las fibras que pueden ser de tres tipos:
  • Colágeno, resistente a la deformación.
  • Elastina, fibras elásticas.
  • Retícula, que forman redes elásticas.
Las células pueden ser de tres tipos:
  1. Macrófagas, son la primera barrera local contra los microorganismos, tienen forma de pseudópodos (falsos pies) utilizando la fagocitosis (comer con los pseudópodos).
  2. Mastocitos, son células esféricas que contienen una sust, anticoagulante y una sust. Vaso/dilatadora o vaso/constrictora.
  3. Adipolitos, son células que almacenan una gota de grasa en su interior y sirven de reserva energética, aislante térmico y amortiguador mecánico.
Las células emigradas son los linfocitos del sistema inmunitario que reconocen lo “extraño al organismo” y lo atacan con anticuerpos.
Hay diferentes tejidos conjuntivos y se diferencian según las células y las fibras que lo forman.
  • Tejido conjuntivo elástico.
Predominan las fibras de elastina y se encuentra en órganos que cambian de forma y volumen, como ocurre en la pleura pulmonar.
  • Tejido conjuntivo laxo.
Se diferencia por tener mucha sustancia intercelular y se encuentra justo debajo de la piel y siempre rodeando todos los vasos sanguíneos y linfáticos.
  • Tejido conjuntivo fibroso.
Contienen muchas fibras de colágeno y son muy resistentes a la deformación. Son los tendones y ligamentos.
  • Tejido conjuntivo reticular.
Predominan las fibras de reticulina que forma una red, que en vuelve los órganos blandos del cuerpo.
  • Tejido conjuntivo adiposo.
Formado por adipolitos, en el cual se almacena grasas.
Tejido cartilaginoso.
Está formado por células llamadas condroplastos y fabrican la sust. intercelular y fibras. Son redondeadas, agrupadas y aisladas por la propia sust. intercelular que fabrican, que es sólida y flexibles. Teniendo una función esquelética ya que sostiene y protege. Con una gran cantidad de fibras que según el tipo de esta forma un tejido:

  • T. Cartilaginoso hialino.
Se caracteriza por contener paca cantidad de colágeno, es translucido y forma la laringe, la tráquea y el tabique nasal entre otros.
  • T. Cartilaginoso elástico.
Contiene una gran cantidad de elastina y forma por ejemplo el pabellón auditivo externo.
  • T. Cartilaginoso fibroso.
Se caracteriza por contener una gran cantidad de colágeno y forma los discos intervertebrales y el menisco.

Tejido óseo.
Es el encargado de la función esquelética que se encarga del sostén de todo el organismo y protege los órganos blandos. Estas células son los osteoblastos y los osteocitos y fabrican la sust. intercelular y las fibras. La sustancia intercelular es sólida y rígida, es sólida por la abundancia de fibras de colágeno combinadas con sust. cálcicas. Los osteoblastos están en la superficie produciendo hueso, mientras que los osteocitos se encuentran aislados en el interior del hueso en lagunas óseas. También se encuentran otro tipo de célula llamados osteoclastosque se dedican a destruir/degradar/absorber hueso. Rápidamente los osteocitos los regeneran formando continuamente hueso. Esta capacidad se pierde con los años. Hay dos tipos de hueso:
  • Hueso compacto.
Lo encontramos formando la caña de los huesos largos y toda la superficie de los huesos. Está formado por conductos longitudinales (canales de Havers) por lo que pasan los nervios y los vasos sanguíneos. Alrededor de estos canales hay unos círculos concéntricos de sust. intercelular producidos por los osteocitos, que quedan en las lagunas óseas comunicadas entre sí y con los vasos sanguíneos mediante conductos calcoferos para intercambiar con la sangre.
  • Hueso esponjoso.
Se encuentra en el interior de los huesos cortos y planos y en todos los extremos de los huesos largos. Se caracteriza porque tiene forma de laberinto tridimensional de láminas cálcicas (trabéculas). Los huecos que se forman están ocupados por tejido hematopoyético, que no es tejido óseo, son células madre de las células sanguíneas (medula roja hueso) y en él se forman los glóbulos rojos, las plaquetas y la mayoría de los glóbulos blancos.

Tejido muscular.

Están formado por células llamadas fibras musculares y son fusiformes, alargadas y tienen la capacidad de acortarse (se contraen). Hay dos tipos:

T. Muscular de fibra lisa.
Está formado por células fusiformes y se caracteriza porque presentan una estriación longitudinal producida por estar abarrotada de una proteína llamada miofibrillasque son la responsable de la contracción muscular. Se encuentra formando las paredes de los conductos internos del útero, vejiga, tubo digestivo, vasos sanguíneos. Estos músculos producen una contracción lenta e involuntaria y es el único tejido muscular en los organismos primitivos.

T. Muscular de fibra estriada.
Está formado por células también fusiformes que presentan una estriación longitudinal como las de fibra lisa y una estriación transversal. Otra diferencia es que sus células son polinucleadas, siendo los límites de las células difuso, esto se debe a que las células se dividen sin separarse. La estriación se debe a la miofibrilla, las estrías son bandas claras y oscuras y forman los sarcomeros, que son la unidad estructural y funcional de las miofibrillas o células musculares. Las miofibrillas son de dos tipos de filamentos de proteínas.

Los filamentos gruesos están formados por una proteína llamada miosina, se encuentra anclada por la base, mientras que los filamentos delgados formados por actina están flotando sobre los filamentos gruesos. Los filamentos gruesos presentan unas cabezas en reposo que no se tocan con los filamentos delgados. Cuando ocurre la contracción los filamentos delgados se unen con las cabezas y manteniendo la unión las cabezas cambien su orientación a un ángulos de 30º. Esto hace que los filamentos delgados se deslicen sobre los gruesos produciendo el acortamiento del sarcomero. Esto se conoce como modelo de los filamentos deslizantes. Este modelo es el mismo para muchos procesos celulares.

Tejido nervioso.
Tienen la función de coordinar el funcionamiento de los organismos, captan los estímulos/variaciones en el medio y los transmite al sistema nervioso central (SNC) que lo analiza y elabora una respuesta, que viaja hasta los efectores (músculos y gandulas) encargados de realizar la función. Hay dos tipos de células: Neuronas y Glía.

Neuronas.
Su función es producir o transmitir impulsos nerviosos. En un sistema nervioso hay 109 de neuronas con diferentes formas y tamaños. Todas las neuronas tienen en común que la mayor parte del contenido celular se encuentra en el cuerpo celular, se encuentran abundantes orgánulos como los que producen la síntesis de proteínas (neurotransmisores) como son el R.E. rugoso, ribosomas y también para la secreción como es el aparato de Golgi, llamados grumos de Nissl que son neurofibrillas como carriles/vías por donde circulan vesículas con neurotransmisores. Además de esto todas las neuronas tienen en común unas prolongaciones cortas y muy ramificadas (dendritas)y unas prolongaciones muy largas y menos ramificadas llamadas axón.

El impulso nervioso nace en el cuerpo celular o dendritas y se transmiten por el axón. Los axones van por los nervios que son un haz de axones envueltos en tejido conjuntivo, siendo los nervios simples cables de conducción.

  • Glía o auxiliares.
Sostienen/auxilian a las neuronas y existen varios tipos:
  • Astrocitos que comunican las neuronas con los vasos sanguíneos.
  • Oligodendrocitos que envuelven a los largos axones en el SNC. Un tipo de olidodendrocito llamado Schwann los envuelve en los nervios fuera del SNC.
  • Microglía se encarga de los desechos de las neuronas.
Las células Glía envuelven por fragmentos a los axones para impedir que se rompan.
Hay dos tipos de axones, uno axón amielinico por donde la conducción de los impulsos eléctricos es continua y otro axón mielinico en el que se acumula un lípido llamado mielina que también se utiliza para proteger. La mielina es un aislante eléctrico que al envolver al axón deja ciertos puntos al descubierto llamados nódulos de Ranvier donde los impulsos eléctricos van saltando de nódulo en nódulo. Esta conducción tiene una mayor velocidad y se llama conducción saltatoria.
Fisiología de la neurona.
Las neuronas producen/transmiten impulsos nerviosos (corriente eléctrica). Al medir esa corriente se descubre que hay una diferencia del potencial eléctrico fuera que dentro de la neurona. En reposo es de -70mw y se llama potencial de reposo. Esta diferencia se debe a la permeabilidad de la membrana de la neurona, ya que no deja salir las cargas negativas como las de Cl- y las proteínas, predominando en su interior las cargas negativas. En las membranas existen unos transportadores llamados bombas de Na+/K+. Estos transportadores consumen energía dejando salir 3 átomos de Na+y cogiendo 2 átomos de K+, esto produce que se acumule carga + en el exterior y carga – en el interior.
El estímulo provoca un cambio que dura un ms en la permeabilidad de la membrana. Este cambio se produce porque la bomba de Na+/K+ deja de funcionar y se abre unos canales iónicos en los que el Na+ entra y el K+sale dejándolos fluir libremente, en este momento se invierte la polaridad, produciendo lo que se llama potencial de acción y mide 50mw. Produciendo un movimiento de las cargas de un signo + sobre las otras que la rodean produciendo una corriente eléctrica o impulso nervioso.
Las cargas de diferente signo actúan como estímulo para las membranas adyacentes y vuelve a ocurrir lo mismo, todo esto dura un ms tras el cual se recupera la permeabilidad en reposo y su potencial vuelve a ser -70mw.
Esta corriente eléctrica circula hasta el extremo del axón donde está la sinapsis en el cual se encuentra otra dendrita o cuerpo celular de otra neurona.

La membrana donde acaba el axón se llama membrana presináptica, en ella se acumulan los neurotransmisores que al llegar la corriente eléctrica se fusionan con la membrana y por difusión van hacia membrana de la dendrita o cuerpo celular de la otra neurona llamado postsináptica, actuando como estímulo pero con neurotransmisores de forma química. Cada neurona tiene 102/104 de sinapsis específicas y tenemos alrededor de 109, esto hace que aparezcan 1012de conexiones.
Los neurotransmisores actúan como estímulo de la membrana postsináptica, cambiando la permeabilidad produciendo un cambio en el potencial de reposo. Este potencial postsináptica no es suficiente como el potencial de acción, transmitiendo entonces por sumación de potencial postsináptica. La sumación temporal de neurotransmisores es igual a la intensidad del estímulo. Cuando se suman distintos postsináptica de diferentes neuronas se produce algún potencial de acción por sumación especial, esto permite relacionar cosas distintas.
Hay dos tipos de neuronas en cuanto a su funcionamiento:
Neuronas sensitivas son las que llevan los impulsos nerviosos desde los órganos de los sentidos hasta el SNC donde son analizadas y relacionan elaborando una respuesta.
Neuronas motoras que son las que llevan el impulso nervioso (respuesta) hasta los órganos efectores que realizan la respuesta.
Órganos, aparatos y sistemas.
Los órganos animales se agrupan en aparatos y sistemas para realizar las funciones vitales.


Aparato digestivo.
Obtiene los nutrientes a través de la digestión y la absorción.




Aparato circulatorio.
Transporta los nutrientes por todo el organismo y se encarga de los desechos metabólicos.

Aparato respiratorio.
Realiza el intercambio gaseoso entre el medio interno y externo.

Aparato excretor.
Elimina los desechos de metabolismo celular que viaja en la sangre.



Aparato reproductor.
Produce los gametos (esperma y óvulos) y hormonas sexuales. Consta de las gónadas (testículos y ovarios) y gonoconductos encargados de la salida de los gametos al exterior.
Sistemas nerviosos.
Recibe la información, la procesa y elabora una respuesta. Coordinación funcional.





Sistema endocrino.
Es un efector del SNC y funciona también como sistema de coordinación funcional como el nervioso.
Sistema locomotor.
Es el que lleva a cabo los movimientos, consta de músculos, huesos y otras estructuras, siendo otro efector del SNC.
Órganos sensoriales.
Forman parte del sistema nervioso, captan y transmiten los estímulos al SNC.


Actividades :

1. Terminaría por romper la epidermis y esta no se regenera; con consecuencia de la deshidratación.
2. Porque tienen parénquima aerífero (células separadas). El aire sirve como sistema de flotación.
3. Porque acumulan lignina (impermeable) y no pueden conseguir nutrientes. Seguidamente se mueren.
4. Porque el xilema acumula lignina, se impermeabilizan y mueren. No conservan los tabiques de separación y se forman tubos.
En el floema no hay lignina y por tanto no se mueren.
5. Son nuevos cada año.
6. Porque no tienen vasos (no se alejan del agua) ni tejidos de sostén (no crecen).
7. No, porque el tejido suberoso es pluriestratificado y opaco (no puede hacer fotosíntesis).
8. La epidermis no tiene cloroplastos. Su función es impermeabilizar no hacer fotosíntesis.
9. Regula el intercambio gaseoso. Para que no le de directamente la luz y no transpire tanto; y el vapor de agua no escape y se acumule dentro.
10. Son las únicas células de la epidermis que no tienen cloroplastos.
11. Porque no les llegaría la luz al parénquima clorofílico.
13. Exocrina: porque expulsa el jugo al tubo digestivo; que tiene contacto con el exterior.
14. Aislante térmico (piel de los animales).
Amortiguador mecánico (evita golpes).
Acumular agua (joroba de camellos).
15. D.
17. Unidad estructural y funcional del musculo.
18. Tejido conectivo conjuntivo. Según el tipo de fibra predominante así son sus propiedades.
19. Que los axones podrían romperse al no tener recubrimiento y no tendrían mielina (aislante eléctrico), lo que provocaría que el impulso eléctrico fuera mas lento.
20. Si, porque proceden del cigoto por mitosis y se obtienen células iguales.
21. Por diferenciación celular.
22. Neurona y sus dendritas, su axón recubierto de mielina llega al nervio.
23. CELULAS PETREAS------------ESCLERENQUIMAS
PLACA CRIBOSA---------------FLOEMA
CEL. EMBRIONARIAS----------MERISTEMO PRIMARIO
SIST. DE HAVERS-------------- TEJIDO OSEO
TRAQUEAS----------------------XILEMA
CLOROPLASTOS---------------PARENQUIMA
CAMBIUM-----------------------MERISTEMO SECUNDARIO
NEURONAS--------------------- TEJIDO NERVIOSO
ERITROCITOS-------------------TEJIDO HEMATOPOYETICO
ADIPOCITOS--------------------TEJIDO ADIPOSO
CEL. CALICIFORMES-----------TEJIDO EPITELIAL
FIBROCITOS---------------------TEJIDO CONECTIVO
OSTEOCITOS--------------------TEJIDO OSEO
CONDROCITOS-----------------TEJIDO CARTILAGINOSO
ENDOTELIO---------------------TEJIDO EPITELIAL
ESTOMAS------------------------EPIDERMIS